McPhail, A. T. \& Onan, K. D. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 456-500.
Nicolet Instrument Corporation (1986). SHELXTL for Desktop 30 (Microeclipse). Report PN269-1040340, April. Nicolet Instrument XRD Corporation, Madison, Wisconsin, USA.

Serena Software (1988). PCMODEL. Molecular modeling software for the IBM PC/XT/AT compatibles. Box 3076, Bloomington, Indiana 47402, USA.
Ul-Hague, M. \& Caughlan, C. N. (1967). J. Chem. Soc. B, pp. 355-359.

Acta Cryst. (1990). C46, 1528-1533

Neutron Structure of the Immunosuppressant Cyclosporin A

By R. B. Knott
Applications of Nuclear Physics Program, Australian Nuclear Science and Technology Organisation, Private Mail Bag, Menai, NSW 2234, Australia
and J. Schefer and B. P. Schoenborn
Centre for Structural Biology, Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA

(Received 22 August 1988; accepted 4 October 1989)

Abstract

Cyclosporin A, $\mathrm{C}_{62} \mathrm{H}_{111} \mathrm{~N}_{11} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=$ 1220.6, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=12.674$ (1), $b=$ $15 \cdot 684$ (2), $c=36 \cdot 304$ (30) $\AA, V=7216 \cdot 5 \AA^{3}, Z=4$, $D_{x}=1 \cdot 107 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda$ (neutron) $=1 \cdot 184 \AA, F(000)=$ 67.39 , room temperature, final $R=0.074$ for 4121 observed reflections. There is one cyclosporin A molecule and one water molecule per asymmetric unit.

Introduction. Cyclosporin A is a neutral, cyclic undecapeptide of fungal origin. Seven of the eleven amino acids are N-methylated (Fig. 1). Cyclosporin A is an immunosuppressant drug with wide clinical application primarily for solid organ and bone marrow transplantation. The ability of this drug to inhibit the activation of subpopulations of immunocompetent cells is a fundamental innovation in immunology. In order to investigate details of the molecular interactions involved in the pharmacological function of cyclosporin A, a detailed knowledge of the structure is required. The structure of cyclosporin A and eighteen derivatives have been determined by X-ray diffraction (Petcher, Weber \& Ruegger, 1976; Loosli, Kessler, Oschkinat, Weber, Petcher \& Widmer, 1985; Weber, 1986; Walkinshaw \& Boelsterli, 1988), and various features investigated by two-dimensional NMR techniques (Loosli et al., 1985). The molecular backbone of cyclosporin A forms a rigid structure with four hydrogen bonds holding the backbone in its folded configuration. Three of the four hydrogen bonds are involved in the formation of a short segment of β-sheet. The highresolution X-ray studies indicate flexibility in a number of the side chains. Studies investigating the
relation between the chemical structure and the pharmacological function have concentrated attention on the region around amino-acid residues MeBmt-1 and Abu-2 (Wenger, 1981; Loosli et al., 1985; Wenger, 1985; Rich, Dhaon, Dunlap \& Miller, 1986). However, the structural differences that lead to the dramatic changes in observed pharmacological function have yet to be defined. Because of the fundamental importance of this drug, a neutron diffraction diffraction study was undertaken for two main reasons. The first reason was to locate all hydrogen atoms particularly those involved in the four intramolecular hydrogen bonds. The second reason was to locate solvent molecules alluded to in the X-ray studies.

Experimental. Cyclosporin A is an extremely hydrophobic molecule (water solubility $<0.04 \mathrm{mg} \mathrm{ml}^{-1}$). It has been crystallized in different space groups $\left(P 2_{1}, P 4_{1}, P 2_{1} 2_{1} 2_{1}\right)$ depending primarily on the organic solvent(s) used (Petcher et al., 1976; Loosli et al., 1985; Weber, 1986). From the X-ray studies, only the $P 2_{1} 2_{1} 2_{1}$ crystal form diffracted to $2 \cdot 0 \AA$, and was therefore chosen for this study. A large crystal (approximate dimensions $2 \times 2 \times 5 \mathrm{~mm}$) was crystallized from a mixture of oil, ethanol and a non-ionic surfactant (unpublished data), and supplied for this study by Dr Hans-Peter Weber (Sandoz, Switzerland). It is designated cyclosporin A mod III to distinguish it from the other crystal forms.

The neutron diffraction data were collected on the H3A Protein Crystallography Diffractometer located at the High Flux Beam Reactor, Brookhaven

National Laboratory, USA (Schoenborn, 1984). A copper monochromator produced a neutron beam of wavelength $1 \cdot 184 \AA$, and an external collimator defined the beam divergence at 0.08°. The crystal was treated as water-free and encapsulated in a quartz tube in a solvent-free environment. Using normal beam geometry, the bulk of the data was collected with the χ axis zero and rotating the crystal around the φ axis parallel to b^{*}. Reflections in the blind region were collected by moving the χ axis to 90° and rotating around the ω axis. The profile of the reflection on the two-dimensional position sensitive detector is dependent on experimental conditions (Schoenborn, 1983). The effects of beam divergence and wavelength spread, crystal size and mosaic, and detector resolution are convolved to produce the observed reflection profile. A profile evaluation computer program integrated the total intensity in a three-dimensional space and corrected for background. A total of 12054 reflections were collected which yielded 4121 independent reflections. Data collection took thirty-two days of beam time. Neutrons cause negligible damage to protein crystals and the diffraction intensity was not monitored explicitly for decay. The diffractometer geometry limited the angular range of data collection to $\sin \theta / \lambda \leq$ $0.546 \AA^{-1}, 0 \leq h \leq 12,0 \leq k \leq 16,0 \leq l \leq 38$. An absorption correction was applied to the observed data using the intensity of two strong reflections

Fig. 1. Schematic of the cyclic undecapeptide cyclosporin A. All residues are in the L-configuration except for D-Ala residue 8. Standard nomenclature for amino acid residues is used together with the following: $\mathrm{MeBmt}=(4 R)-4-[(E)-2$-butenyl] $]-4, N$-di-methyl-L-threonine; $\mathrm{Abu}=\alpha$-aminobutyric acid; $\mathrm{Sar}=$ sarcosine (N-methylglycine). The four intramolecular hydrogen bonds (1-4) are identified.
measured as a function of angle φ, and the semiempirical algorithm of North, Phillips \& Mathews (1968).

Refinement using F_{o} magnitudes was carried out using the 400 -atom version of the SHELX76 computer code (Sheldrick, 1976). Atomic scattering factors were from Sears (1984). Cell parameters and atomic position parameters from the X-ray structure analysis (Weber, 1986) were used as starting values in a blocked full-matrix least-squares refinement. All parameters were used as variables. Despite the low observed-to-free-parameter ratio (2-3:1) the refinement was stable at all times. Geometric constraints were imposed on the hydrogen atoms in the initial refinement steps. The constraints were gradually relaxed until refinement for all atoms with anisotropic thermal parameters produced a final $R=$ $0.074, w R=0.034$ where $w=1 / \sigma^{2}(F)$. All atomic coordinates and thermal parameters were unrestrained except for the coordinates of methylene group C2B, the methyl groups C5C2 and C8B, and the water molecule. For these, the interatomic distances were given fixed values: $\mathrm{C}-\mathrm{H} 1 \cdot 08, \mathrm{H}-\mathrm{H}$ (methyl) $1.747, \mathrm{O}-\mathrm{H} 0.965, \mathrm{H}-\mathrm{H}$ (water) $1.526 \AA$.

Discussion. Table 1 is a list of the final position parameters, and equivalent isotropic thermal parameters, $B_{\text {eq }}$, for all atoms in the asymmetric unit.* The non-conventional nomenclature for atom labelling follows that established in the X-ray structure analysis of cyclosporin-A (Petcher et al, 1976).

The estimated standard deviations of atomic coordinates calculated in the refinement procedure are: $\mathrm{N} 0.004, \mathrm{O} 0.006, \mathrm{C}$ (backbone) $0.005, \mathrm{C}$ (side chain) $0.008, \mathrm{H}$ (backbone) $0.01, \mathrm{H}$ (side chain) $0.02 \AA$. These underestimate the true values and a more reliable indication is given by the estimated standard deviation of bond lengths calculated from the atomic coordinates: $\mathrm{C}-\mathrm{N} 1 \cdot 46, \mathrm{C}-\mathrm{N}$ (peptide) $1.35(1)$, $\mathrm{C}-\mathrm{O} \quad 1.22, \mathrm{C}-\mathrm{C} 1.52(3), \mathrm{C}-\mathrm{H} \quad 1.06(7), \mathrm{N}-\mathrm{H}$ 1.05 (2) \AA. A histogram of $\mathrm{C}-\mathrm{H}$ bond length (uncorrected for thermal motion) is given in Fig. 2(a). A histogram of the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bond angle calculated from the atomic coordinates is given in Fig. 2(b). The mean bond angle is $110(3)^{\circ}$.

There is substantial agreement between the nonhydrogen atomic coordinates for the cyclosporin A mod III crystal structure determined by X-ray and by neutron diffraction. Approximately 74% of position differences are $<0.05 \AA$. Only two atoms have position differences that exceed $0.1 \AA$. They are

[^0]Table 1. A complete list of the fractional coordinates for the 199 atoms in the asymmetric unit, and equivalent isotropic temperature factors B_{eq}

The e.s.d. of the atomic coordinates is calculated in the refinement procedures.

	x	y	z	$B_{\text {eq }}$	${ }_{\text {CllC2 }}$	$-0.2264(9)$ $-0.6279(11)$
N1	-0.3513 (3)	0.5401 (2)	0.8412 (1)	${ }^{4.6505}$	HS1	-0.5935 (19)
ClN	-0.4395 (6)	0.5026 (6)	0.8207 (2)	6.0586	HS2	-0.6544 (19)
Cl_{1}	-0.3296 (4)	0.5072 (3)	0.8788 (1)	4.1584	H 1 Na	-0.4877 (12)
Cl	-0.2865 (5)	0.4177 (3)	0.8745 (1)	4.4426	H 1 Nb	-0.4138 (13)
01	-0.3452 (6)	0.3585 (4)	0.8656 (2)	$7 \cdot 1166$	HiNc	-0.4768 (13)
C1B	-0.4290 (4)	0.5100 (4)	0.9037 (1)	4.5321	H1a	-0.2690 (7)
O1B	-0.4798 (7)	0.5903 (5)	0.9013 (2)	6.9061	H1b	-0.4810 (9)
$\mathrm{ClC}^{\text {c }}$	-0.4021 (5)	0.4925 (4)	0.9443 (1)	5.1374	$\mathrm{H} 1 O B$	-0.5184 (14)
CICMe	-0.5015 (7)	0.4801 (7)	0.9650 (2)	8.0509	H1C	-0.3513 (10)
C1D	-0.3340 (6)	0.5641 (5)	0.9611 (2)	6.5113	H1CMea	-0.5465 (13)
C1E	-0.2902 (6)	0.5442 (5)	0.9979 (1)	7.9351	HıCMeb	-0.4750 (13)
C1F	-0.3040 (7)	0.5834 (5)	1.0276 (2)	9.3274	H1CMec	-0.5441 (15)
${ }_{\text {ClG }}$	-0.2572 (8)	0.5677 (9)	1.0651 (3)	12.1356	H1Da	-0.3799 (13)
N2	-0.1811 (3)	0.4105 (2)	0.8786 (1)	4.4189	H1Db	-0.2727 (12)
C2A	-0.1232 (4)	0.3348 (3)	0.8695 (1)	4.6927	H1E	-0.2403 (14)
C 2	-0.0884 (4)	0.2916 (3)	0.9056 (1)	4.5637	H1F	-0.3632 (15)
O 2	-0.0165 (5)	0.3238 (4)	0.9234 (1)	$5 \cdot 3006$	H1Ga	-0.1990 (24)
C2B	-0.312 (6)	$0 \cdot 3612$ (5)	0.8457 (2)	7.2877	H1Gb	-0.3086 (16)
C2C	0.0297 (10)	0.2843 (8)	0.8308 (3)	9.9591	H1Gc	-0.2384 (34)
N3	-0.1376 (3)	0.2206 (2)	0.9180 (1)	5.3559	H2	-0.1385 (9)
C3N	-0.2368 (7)	$0 \cdot 1817$ (5)	0.9029 (2)	6.6403	H2A	-0.1845 (10)
C3A	-0.1018 (7)	$0 \cdot 1907$ (5)	0.9543 (2)	$5 \cdot 8875$	H2Ba	0.0200 (14)
C3	-0.1366 (4)	0.2621 (3)	0.9826 (1)	4.9058	H2Bb	-0.0693 (11)
03	-0.2247 (5)	0.2922 (4)	0.9805 (1)	5.5059	H 2 Ca	0.0499 (14)
N4	-0.0651 (3)	0.2862 (2)	1.0083 (1)	4.7953	H 2 Cb	0.0759 (21)
C4N	0.0402 (6)	0.2516 (5)	1.0110 (2)	5.7849	H2Cc	-0.0234 (16)
C4A	-0.0923 (4)	0.3589 (3)	1.0318 (1)	4.1136	H 3 Na	-0.2524 (21)
C4	-0.0321 (4)	0.4382 (3)	1.0209 (1)	4.7453	H3Nb	-0.2895 (13)
O 4	-0.0078 (6)	0.4928 (4)	1.0428 (2)	7.3061	H3Nc	$-0.2237(17)$
C4B	-0.0820 (5)	0.3372 (5)	1.0730 (1)	5.6428	H3Aa	-0.1485 (11)
C4C	-0.1569 (6)	0.2674 (5)	1.0859 (1)	7.9562	H3Ab	-0.0286 (11)
C4D1	-0.1282 (11)	0.2345 (9)	1.1224 (3)	11.7303	H4Na	0.0807 (11)
C4D2	-0.2670 (7)	0.2891 (7)	1.0843 (3)	9.6222	H4Nb	0.0471 (16)
N5	-0.0101 (3)	0.4486 (2)	0.9852 (1)	4.2873	$\mathrm{H} 4 \mathrm{~N}_{\mathrm{c}}$	0.0909 (12)
C5A	0.0418 (4)	0.5230 (3)	0.9703 (1)	4.5611	H4A	-0.1731 (8)
C5	-0.0339 (4)	0.5759 (3)	0.9483 (1)	$4 \cdot 3452$	H4Ba	-0.0934 (10)
OS	-0.0740 (5)	0.5465 (3)	0.9202 (1)	4.7716	H4Bb	0.0023 (10)
C5B	0.1379 (5)	0.4987 (4)	0.9464 (1)	6.2665	H4C	-0.1387 (14)
C5C1	0.2156 (6)	0.4389 (7)	0.9645 (3)	8.6800	H4D1a	-0.1187 (16)
C5C2	0.1899 (5)	0.5791 (5)	0.9318 (2)	10.2907	H4D1b	-0.0374 (15)
N6	-0.0528 (3)	0.6578 (2)	0.9586 (1)	4.5979	H4D1c	-0.1701 (19)
C6N	-0.0106 (8)	0.6980 (5)	0.9913 (2)	7.9167	H4D2a	-0.2786 (18)
C6A	-0.1098 (4)	0.7137 (3)	0.9318 (1)	$4 \cdot 1005$	H4D2 b	-0.3200 (17)
C6	-0.0261 (4)	0.7526 (3)	0.9064 (1)	4.3742	H4D2c	-0.2915 (11)
O6	0.0331 (5)	0.8086 (4)	0.9174 (1)	6.3139	H5	-0.0376 (9)
${ }^{\text {C6B }}$	-0.1771 (5)	0.7843 (4)	0.9489 (1)	$5 \cdot 1796$	H5A	0.0709 (8)
C6C	-0.2369 (4)	0.8367 (3)	0.9202 (1)	5.4348	H5B	0.0989 (9)
$\mathrm{C}_{6} \mathrm{D}_{1}$	-0.2735 (9)	0.9185 (6)	0.9357 (2)	7.9588	HSCla	0.2427 (17)
C_{6} D 2	-0.3273 (9)	0.7858 (8)	0.9037 (3)	9.1195	HSCl b	0.2728 (16)
N7	-0.0216 (3)	0.7197 (2)	0.8723 (1)	$3 \cdot 9241$	$\mathrm{HSCl}_{\text {c }}$	0.1656 (13)
C7A	0.0603 (4)	0.7435 (3)	0.8465 (1)	$4 \cdot 1689$	H5C2a	0.2177 (16)
C7	0.0330 (4)	0.8251 (3)	0.8246 (1)	$4 \cdot 3005$	H5C2b	0.1376 (8)
07	0.0381 (5)	0.8293 (4)	0.7914 (1)	$6 \cdot 2060$	H5C2c	0.2571 (9)
C7B	0.0847 (6)	0.6704 (5)	0.8217 (2)	6.3823	H 6 Na	-0.0740 (16)
N8	0.0048 (3)	0.8912 (2)	0.8452 (1)	4.9901	H6Nb	0.0495 (19)
C8A	-0.0239 (4)	0.9738 (3)	0.8295 (1)	4.9322	H6Nc	-0.0063 (16)
C8	-0.1396 (4)	0.9735 (3)	0.8168 (1)	4.6663	H6A	-0.1582 (7)
O8	-0.2093 (5)	0.9569 (4)	0.8400 (1)	5-2901	H6Ba	-0.2300 (9)
C8B	-0.0116 (5)	1.0419 (4)	0.8574 (1)	8.0878	H6Bb	-0.1263 (9)
N9	-0.1633 (3)	0.9968 (2)	0.7822 (1)	4.5874	H6C	-0.1813 (8)
C9N	-0.0850 (6)	1.0121 (6)	0.7544 (2)	6.6955	H6D1a	-0.3291 (14)
C9A	-0.2738 (4)	1.0110 (3)	0.7718 (1)	$3 \cdot 8952$	H6D1b	-0.3076 (13)
C9	-0.3066 (4)	0.9507 (3)	0.7407 (1)	4.8611	H6DIc	-0.2154 (17)
09	-0.2822 (7)	0.9684 (4)	0.7090 (1)	8.4694	H6D2a	-0.3726 (19)
C9B	-0.2935 (5)	1-1025 (3)	0.7598 (1)	4.7611	H6D2b	-0.2994 (18)
C9C	-0.2858 (4)	1.1681 (3)	0.7906 (1)	4.5953	H6D2c	-0.3644 (12)
C9D1	-0.2747 (9)	1.2573 (5)	0.7739 (2)	7.5930	H7	-0.0780 (8)
C9D2	-0.3822 (6)	1-1626 (5)	0.8152 (2)	6.7218	H7A	0.1281 (8)
N10	-0.3617 (3)	0.8800 (2)	0.7483 (1)	4.0768	H7 ${ }^{\text {a }}$	0.0165 (10)
C10N	-0.3991 (6)	0.8316 (4)	0.7161 (1)	5.0111	H7Bb	0.1099 (14)
Cl0A	-0.4012 (4)	0.8531 (3)	0.7846 (1)	3.6899	H7BC	0.1442 (11)
C10	-0.3973 (4)	0.7550 (3)	0.7870 (1)	4.0768	H8	0.0017 (9)
O10	-0.4815 (5)	0.7151 (4)	0.7877 (2)	$5 \cdot 6112$	H8A	0.0262 (10)
C10B	-0.5112 (4)	0.8879 (4)	0.7919 (1)	4.5926	H8Ba	-0.0604 (9)
${ }^{\text {C10C }}$	-0.5538 (4)	0.8799 (4)	0.8317 (1)	4.9058	H8Bb	-0.0378 (9)
C10D1	-0.6689 (7)	0.8763 (7)	0.8328 (2)	8.7773	H8BC	0.0685 (6)
C10D2	-0.5136 (9)	0.9495 (5)	0.8558 (2)	6.5692	H9Na	-0.1206 (12)
N11	-0.3023 (3)	0.7185 (2)	0.7866 (1)	4.0742	H9 Nb	-0.0279 (10)
C11N	-0.1996 (5)	0.7644 (4)	0.7903 (2)	4.6269	H9Nc	-0.0348 (12)

Table 1 (cont.)

	x	y	z	$B_{\text {ca }}$
C11A	-0.2995 (4)	0.6253 (3)	0.7862 (1)	4.0321
C11	-0.2810 (4)	0.5925 (3)	0.8263 (1)	3.9136
011	-0.1970 (5)	0.6159 (3)	0.8417 (1)	5.2532
C11B	-0.2139 (4)	0.5859 (3)	0.7605 (1)	4.3242
$\mathrm{Cl1C1}$	-0.2212 (7)	0.4896 (4)	0.7606 (2)	5.7480
C11C2	-0.2264 (9)	0.6175 (6)	0.7213 (2)	7.7588
OSOL	-0.6279 (11)	0.6279 (8)	0.8420 (3)	16.4124
HS1	-0.5935 (19)	0.6675 (13)	0.8256 (5)	22.9158
HS2	-0.6544 (19)	0.5836 (13)	0.8260 (4)	19.4628
HiNa	-0.4877 (12)	0.4696 (10)	0.8392 (3)	12.6304
H 1 Nb	-0.4138 (13)	0.4592 (10)	0.8020 (4)	10.9092
HINc	-0.4768 (13)	0.5451 (10)	0.8072 (5)	12.0040
H1a	-0.2690 (7)	0.5518 (5)	0.8902 (2)	4.5505
H1b	-0.4810 (9)	0.4628 (7)	0.8942 (3)	6.2639
HiOB	-0.5184 (14)	0.6014 (11)	0.8814 (3)	10.8355
HIC	-0.3513 (10)	0.4331 (7)	0.9443 (3)	8.0615
H1CMea	-0.5465 (13)	0.5332 (11)	0.9639 (5)	11.0276
HiCMeb	-0.4750 (13)	0.4671 (9)	0.9949 (4)	11.9830
HiCMec	-0.5441 (15)	0.4296 (14)	0.9561 (5)	14.0069
H1Da	-0.3799 (13)	0.6212 (8)	0.9629 (3)	8.0667
H1Db	-0.2727 (12)	0.5768 (11)	0.9426 (3)	12.4936
H1E	-0.2403 (14)	0.4942 (13)	1.0000 (4)	17.1573
H1F	-0.3632 (15)	$0 \cdot 6377$ (11)	1.0258 (4)	16.6493
H1Ga	-0.1990 (24)	0.6048 (25)	1.0703 (8)	22.5053
H1Gb	-0.3086 (16)	0.5812 (16)	1.0853 (3)	16.9020
H1Gc	-0.2384 (34)	0.5145 (16)	1.0677 (7)	29.5482
H2	-0.1385 (9)	0.4601 (7)	0.8897 (3)	6.3271
H2A	-0.1845 (10)	0.2883 (6)	0.8545 (2)	7.8799
H2Ba	0.0200 (14)	0.4008 (9)	0.8626 (4)	11.6119
H 2 Bb	-0.0693 (11)	0.4002 (9)	0.8250 (3)	11.0408
H 2 Ca	0.0499 (14)	0.2503 (10)	0.8505 (4)	8.7958
H 2 Cb	0.0759 (21)	$0 \cdot 3059$ (15)	0.8102 (6)	20.2419
H 2 Cc	-0.0234 (16)	$0 \cdot 2427$ (12)	0.8111 (6)	14.3754
H3Na	-0.2524 (21)	0.2071 (16)	0.8817 (5)	20.4734
H 3 Nb	-0.2895 (13)	$0 \cdot 1792$ (21)	0.9177 (5)	15.8545
H 3 Nc	-0.2237 (17)	0.1247 (11)	0.8969 (8)	15.8334
H3Aa	-0.1485 (11)	0.1353 (8)	0.9614 (3)	8.3220
H3Ab	-0.0286 (11)	0.1773 (10)	0.9539 (3)	6.9298
H4Na	0.0807 (11)	0.2582 (12)	0.9839 (4)	13.2068
H4Nb	0.0471 (16)	0.2010 (10)	1.0183 (7)	15.2228
H 4 Nc	0.0909 (12)	0.2942 (12)	1.0259 (4)	13.5226
H4A	-0.1731 (8)	0.3716 (7)	1.0253 (2)	5.4533
H4Ba	-0.0934 (10)	$0 \cdot 3970$ (8)	1.0884 (3)	7.1903
H4Bb	0.0023 (10)	0.3217 (9)	1.0798 (3)	9.2300
H4C	-0.1387 (14)	0.2106 (7)	1.0659 (3)	11.7961
H4D1a	-0.1187(16)	0.2883 (11)	1.1429 (3)	14.0201
H4D1 b	-0.0374 (15)	0.2134 (15)	$1 \cdot 1225$ (6)	14.8912
H4D1c	-0.1701 (19)	$0 \cdot 1906$ (12)	$1 \cdot 1327$ (5)	14.4201
H4D2a	-0.2786 (18)	0.3443 (18)	$1 \cdot 1052$ (5)	20.9104
H4D2 b	-0.3200 (17)	0.2412 (11)	1.0922 (5)	13.5174
H4D2c	-0.2915 (11)	0.3089 (14)	1.0566 (4)	15.9492
H5	-0.0376 (9)	0.4011 (6)	0.9658 (2)	6.0612
H5A	0.0709 (8)	0.5564 (6)	0.9962 (3)	5.9112
H5B	0.0989 (9)	0.4634 (8)	0.9220 (3)	8.8458
HSCla	0.2427 (17)	0.4699 (12)	0.9915 (5)	15.6887
HSCl b	0.2728 (16)	0.4211 (13)	0.9484 (5)	13.6016
HSCl_{c}	0.1656 (13)	0.3862 (11)	0.9764 (6)	14.7965
H5C2a	0.2177 (16)	0.6161 (10)	0.9549 (4)	20.6998
H5C2b	0.1376 (8)	0.6189 (11)	0.9158 (5)	14.9044
H5C2c	0.2571 (9)	0.5635 (9)	0.9148 (4)	16.1361
H6Na	-0.0740 (16)	0.7358 (13)	1.0046 (5)	14.5938
H6Nb	0.0495 (19)	0.7321 (16)	0.9874 (5)	17.7573
H 6 Nc	-0.0063 (16)	0.6509 (9)	1.0131 (3)	13.9148
H6A	-0.1582 (7)	0.6698 (5)	0.9155 (2)	4.3900
$\mathrm{H}_{6} \mathrm{Ba}$	-0.2300 (9)	0.7547 (6)	0.9690 (3)	7.4851
H6Bb	-0.1263 (9)	0.8262 (6)	0.9638 (3)	7.0271
H6C	-0.1813 (8)	0.8539 (6)	0.8970 (2)	6.6850
H6D1a	-0.3291 (14)	0.9098 (12)	0.9533 (5)	11.0908
H6D1b	-0.3076 (13)	0.9622 (8)	0.9138 (3)	11.4566
H6DIc	-0.2154 (17)	0.9568 (10)	0.9453 (6)	14.7280
H6D2a	-0.3726 (19)	0.7679 (19)	0.9221 (6)	15.1886
${ }_{\text {H6D2b }}$	-0.2994 (18)	0.7311 (10)	0.8877 (5)	16.4861
$\mathrm{H}_{6} \mathrm{D} 2 \mathrm{c}$	-0.3674 (12)	0.8233 (10)	0.8840 (5)	13.7095
H7	-0.0780 (8)	0.6742 (5)	0.8640 (2)	4.8269
H7A	0.1281 (8)	0.7615 (6)	0.8648 (2)	6.0060
H7Ba	0.0165 (10)	0.6509 (9)	0.8063 (4)	10.1275
H7Bb	0.1099 (14)	0.6156 (8)	0.8373 (3)	12.0014
H7BC	0.1442 (11)	0.6851 (9)	0.8030 (3)	11.5935
H8	0.0017 (9)	0.8865 (6)	0.8744 (2)	6.8587
H8A	0.0262 (10)	0.9851 (7)	0.8057 (3)	9.3274
H8Ba	-0.0604 (9)	1.0255 (8)	0.8807 (2)	10.0091
H8Bb	-0.0378 (9)	1.1030 (5)	0.8471 (3)	13-9543
H8BC	0.0685 (6)	1.0490 (8)	0.8670 (3)	11.8488
H9Na	-0.1206 (12)	1.0146 (10)	0.7299 (3)	10.1380
H9Nb	-0.0279 (10)	0.9566 (11)	0.7546 (4)	11.9251
H9Nc	-0.0348 (12)	1.0696 (11)	0.7595 (4)	11.9909

Table 1 (cont.)

	x	y	z	$B_{\text {eq }}$
H9A	-0.3163 (7)	0.9973 (5)	0.7967 (2)	4.9716
H9Ba	-0.3696 (10)	$1 \cdot 1056$ (7)	0.7468 (3)	7.2166
H9Bb	-0.2372 (9)	1-1191 (6)	0.7365 (2)	6.8561
H9C	-0.2169 (8)	1.1539 (6)	$0 \cdot 8080$ (2)	6.0876
H9Dla	-0.3386 (14)	1.2708 (8)	0.7562 (4)	12.3883
H9D1b	-0.2048 (12)	1.2687 (9)	0.7586 (4)	8.2247
H9Dlc	-0.2724 (11)	$1 \cdot 3037$ (7)	0.7964 (3)	9.4669
H9D2a	-0.4458 (12)	$1 \cdot 1657$ (14)	0.7998 (5)	11.7645
H9D2b	-0.3748 (13)	$1 \cdot 2158$ (7)	0.8349 (3)	11.1381
H9D2c	-0.3753 (14)	$1 \cdot 1050$ (8)	0.8309 (3)	11.4908
H10Na	-0.4770 (12)	0.8083 (16)	0.7195 (4)	15.6650
HiONb	-0.3507 (16)	0.7821 (11)	0.7101 (5)	14.1938
HIONc	-0.3958 (19)	0.8629 (8)	0.6945 (3)	14.1964
H10A	-0.3467 (7)	0.8799 (5)	0.8065 (2)	4.5032
H10Ba	-0.5134 (8)	0.9569 (6)	0.7837 (3)	5.8217
H10Bb	-0.5608 (8)	0.8536 (6)	0.7728 (2)	6.0586
H 10 C	-0.5089 (10)	0.8183 (7)	0.8430 (3)	7.9378
H10Dla	-0.7001 (14)	0.9423 (14)	0.8228 (5)	14.9991
HIOD1b	-0.6985 (13)	0.8675 (11)	0.8607 (3)	13.3147
H10D1c	-0.7040 (15)	0.8279 (15)	0.8169 (5)	15.5808
H10D2a	-0.5377 (15)	1.0125 (7)	0.8467 (4)	12.2462
H10D2b	-0.4166 (9)	0.9539 (8)	0.8554 (3)	8.2957
H10D2c	-0.5332 (11)	0.9420 (8)	0.8833 (3)	9.0326
H11 Na	-0.1410 (9)	0.7293 (8)	0.7925 (5)	8.8221
HIINb	-0.2083 (13)	0.8003 (11)	0.8175 (4)	13.2305
Hilnc	-0.1971 (11)	0.8095 (9)	0.7711 (5)	13.1700
H H a	-0.3749 (7)	0.6044 (6)	0.7758 (2)	5.1164
Hilb	-0.1419 (9)	0.6031 (8)	0.7708 (3)	7.1903
HIICla	-0.2925 (13)	0.4658 (8)	0.7526 (4)	8.9984
H11Clb	-0.2081 (11)	0.4656 (7)	0.7906 (3)	9.1090
HilClc	-0.1618 (13)	0.4614 (9)	0.7457 (4)	11.0250
H11C2a	-0.3058 (12)	0.6100 (13)	0.7112 (3)	10.8065
H11C2b	-0.1774 (13)	0.5898 (9)	0.7052 (4)	9.1169
H11C2c	-0.2286 (15)	0.6892 (7)	0.7198 (3)	11.7935

ClCMe (MeBmt-1) with a shift of $0 \cdot 10 \AA$, and O 9 (MeLeu-9) with a shift of $0 \cdot 31 \AA$.

There are a number of discrepancies between the calculated hydrogen positions for the X-ray structure, and the measured values for the neutron structure. This reflects the somewhat arbitrary choice in the X-ray structure for the hydrogen position from a number of energetically possible options. One of particular interest because of the position in a pharmacologically important region, is the hydrogen atom HlOB (MeBmt-1) with a shift of $1 \cdot 29 \AA$. There must have been no supplementary information in the X-ray analysis to suggest one of the other options.

Bond lengths and angles for the four intramolecular hydrogen bonds are given in Table 2. Values from the X -ray structures of the $P 2_{1}, P 4_{1}$ and $P 2_{1} 2_{1} 2_{1}$ crystal forms are included for comparison. Despite significant differences in other aspects of the structure (side-chain flexibility, packing geometry, etc.), these data indicate that the molecular backbone remains remarkably invariant. The torsional angles φ, ψ and ω for the peptide chain are given in Table 3 . The maximum deviation from planarity for the trans-peptide bond is 13°.

Hydrogen bonds in protein structures have been studied extensively. A statistical analysis of 500 hydrogen bonds in β-sheet structures gave a mean ($\mathrm{O} \cdots \mathrm{H}$) bond length of 1.96 (16) \AA and a mean donor bond angle ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) of $160(10)^{\circ}$ (Baker \& Hubbard, 1984). This compares with a mean bond length of 1.95 (3) \AA for cyclosporin A hydrogen
bonds $1-3$, and a mean angle of $158(8)^{\circ}$. In an apolar environment, hydrogen bonds $1-3$ are known to persist unchanged in solution, and hydrogen bond 4 to form a bifurcated bond to O6 (MeLeu-6) and O8 (D-Ala-8) (Loosli et al. 1985).

An ordered water molecule was found in a difference Fourier synthesis. It forms an intramolecular bridge between the atoms O 10 (MeLeu-10) and $\mathrm{H} 1 O B$ (MeBmt-1), and an intermolecular bridge to the atom O^{\prime} (MeLeu- 9^{\prime}) on the next molecule. Bond lengths and angles are given in Table 4. The thermal parameters of the water molecule (Table 1) are high indicating some disorder or large average displacement. Refinement of the site occupancy factors for the water molecule indicated that the site was fully occupied. The precise origin of the water molecule remains to be identified. Because of the extreme hydrophobicity of cyclosporin A, the crystal was grown from a mixture of organic solvents (oil, ethanol and a non-ionic surfactant), using the same procedure that produced the crystals for the X-ray

Fig. 2. Histograms of the geometric data for the 111 hydrogen atoms in cyclosporin A: (a) the $\mathrm{C}-\mathrm{H}$ bond length distribution (uncorrected for thermal motion) at $0.01 \AA$ resolution; (b) the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bond angle distribution at 1° resolution.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the four intramolecular hydrogen bonds in cyclosporin A

Interatomic distances are denoted $\mathrm{N} \cdots \mathrm{O}$ for nitrogen-oxygen, $\mathrm{H} \cdots \mathrm{O}$ for hydrogen-oxygen and $\mathrm{N}-\mathrm{H}$ for the nitrogen-hydrogen bond. The angle between the $\mathrm{N}-\mathrm{H}$ bond and the $\mathrm{H} \cdots \mathrm{O}$ (hydrogen) bond is denoted by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$.

Bond	$P 2_{1} 2,21$		$\begin{gathered} P 4_{1} \\ \text { (X-ray) } \end{gathered}$	$\begin{gathered} P 2_{1} \\ (\mathrm{X}-\mathrm{ray}) \end{gathered}$
	(Neutron)	(X-ray)		
$\mathrm{N} \cdots \mathrm{O}$				
1	2.978	2.957	3.02	$3 \cdot 21$
2	2.942	2.967	2.85	$3 \cdot 26$
3	2.970	2.994	2.89	3.03
4	2.948	2.911	2.96	2.91
H \cdots				
1	1.979	2.005*	2.06*	2.16*
2	1.925	1.966^{*}	1.84*	2.15*
3	1.940	1.994*	1.98**	1.99*
4	2.019	2.002*	1.95*	$2 \cdot 00^{*}$
$\mathrm{N}-\mathrm{H}$				
1	1.079	1.021*	1-27*	1.094*
2	1.030	1.020**	1-29**	1.067*
3	1.054	1.029*	1.31*	1.083*
4	1.056	1.020**	1-28*	1.080*
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$				
1	155.8	154.1**		
2	$167 \cdot 2$	166.4*		
3	151.1	163.2**		
4	149.0	147.0*		
* Calculated hydrogen position.				

Table 3. Torsional angles φ, ψ and $\omega\left({ }^{\circ}\right)$ for the cyclic peptide chain that forms the molecular backbone of cyclosporin A

Residue			
MeBmt-1	-99	ψ	ω
Abu-2	-108	-103	-169
Sar-3	68	-133	-175
MeLeu-4	-106	34	173
Val-5	-110	119	177
MeLeu-6	-86	107	-173
Ala-7	-88	51	-180
D-Ala-8	83	-127	-170
MeLeu-9	-122	102	3
MeLeu-10	-145	66	-176
MeVal-11	-98	121	178

Table 4. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the water molecule

The angle between the $\mathrm{O}-\mathrm{H}$ bond and the $\mathrm{H} \cdots \mathrm{O}$ (hydrogen) bond is denoted by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$.

$\mathrm{HS1}-\mathrm{OSOL}$	0.965*
HS2-OSOL	0.965*
OSOL $\cdots \mathrm{HlOB}$	2.043
$\mathrm{HS} 1 \cdots \mathrm{O} 10$	$2 \cdot 118$
HS ${ }^{\prime} \cdots{ }^{\prime}{ }^{\prime}$	$2 \cdot 344$
$\mathrm{HS1}-\mathrm{OSOL}-\mathrm{HS} 2$	104•6*
$\mathrm{OlB}-\mathrm{HIOB} \cdots \mathrm{OSOL}$	169.7
OSOL-HS1 \cdots O10	157.2
$\mathrm{OSOL}-\mathrm{HS2}{ }^{\circ} \mathrm{O}^{\prime}$	173.8

Symmetry code: $-1-x, \frac{1}{2}+y, 1 \frac{1}{2}-z$.

* Fixed atom position.
analysis. The crystal was stored in an air- and lighttight container until mounted on the neutron diffractometer. As outlined above, the only notable differences in the atomic coordinates from the X-ray and neutron analyses are in the region occupied by the water molecule.

The interaction of water with protein structures is of fundamental importance and has been studied extensively. At present, statistical analysis of observed geometries provides the best indication of the energetics of the hydrogen bonds involved in the water interaction. Many questions remain unanswered but a number of general trends are emerging.

Fig. 3. Plot of the donor angle ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) against the $\mathrm{O} \cdots \mathrm{H}$ bond length for hydrogen bonds involved in water interactions in small hydrate structures (after Savage \& Finney, 1986). The three water hydrogen bonds for the cyclosporin A molecule are labelled with the $\mathrm{O} \cdots \mathrm{H}$ oxygen atom.

Fig. 4. Stereoview (Johnson, 1976) of the cyclosporin A molecule. Thermal ellipsoids are drawn at the 50% probability level for the non-hydrogen atoms, and hydrogen atoms are drawn as spheres of arbitrary radius. Residues are numbered as close as possible to the α-carbon atom.

The dependence of donor angle $(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$ on $\mathrm{O} \cdots \mathrm{H}$ bond length provides a semi-quantitative indication of the bond strength. Fig. 3 is a comparison between data obtained from an analysis of water structures in small hydrate crystal structures (Savage \& Finney, 1986) and that from this study. The hydrogen-bond lengths tend toward the upper limit of values documented in the Savage \& Finney survey. In an apolar environment, the MeBmt-1 side chain has been observed to rotate out of the cleft of the β-sheet and locate proboscis-like in the solvent (Loosli et al., 1985).

No other ordered solvent molecules of significance were found in the final difference Fourier synthesis, where maximum positive and negative residuals were $3 \cdot 1 \%$ of the height of an N -atom peak. All intermolecular distances are in the range of normal van der Waals values.
The ORTEPII molecular graphics program (Johnson, 1976) was used to generate the stereoview of the cyclosporin A molecule given in Fig. 4. The water molecule is shown hydrogen bonding the MeBmt-1 side chain to the molecular backbone.
The addition of the geometric parameters for the hydrogen atoms completes the high-resolution structure of cyclosporin A in the single-crystal environment. The geometric parameters of a single bound water molecule has provided evidence for an ordered solvent interaction. What contribution this structural information makes to the understanding of the highly specific pharmacological function of cyclosporin A is under investigation.

The assistance of Sandoz Pharmaceutical Ltd, especially Dr Hans-Peter Weber for access to data before publication and for the supply of a superb single crystal of cyclosporin A mod III, is gratefully
acknowledged. The assistance of Dr Don Craig (University of New South Wales) and Dr Mitchell Guss (University of Sydney) with computer graphics is also gratefully acknowledged. Research was carried out, in part, at the Brookhaven National Laboratory under the auspices of the Office of Health and Environmental Research (OHER), US Department of Energy, and with partial support from the National Sciences Foundation.

References

Baker, E. N. \& Hubbard, R. E. (1984). Prog. Biophys. Mol. Biol. 44, 97-179.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
loosli, H.-R., Kessler, H., Oschkinat, H., Weber, H.-P., Petcher, T. \& Widmer, A. (1985). Helv. Chim. Acta, 68, 682-704.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Petcher, T., Weber, H.-P. \& Ruegger, A. (1976). Helv. Chim. Acta, 59, 1480-1488.
Rich, D. H., Dhaon, M. K., Dunlap, B. \& Miller, S. P. F. (1986). J. Med. Chem. 29, 978-984.

Savage, H. F. J. \& Finney, J. L. (1986). Nature (London), 322, 717-720.
Schoenborn, B. P. (1983). Acta Cryst. A39, 315-321.
Schoenborn, B. P. (1984). In Neutrons in Biology, edited by B. P. Schoenborn, pp. 261-279. New York: Plenum.
Sears, V. F. (1984). Report AECL-8490. Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Walkinshaw, M. D. \& Boelsterli, J. J. (1988). In Abstracts of the Eleventh European Crystallographic Meeting, Vienna, Austria. Munchen: Oldenbourg Verlag GmbH.
Weber, H.-P. (1986). Private communication.
Wenger, R. M. (1981). In Cyclosporin A. Proceedings of an International Conference on Cyclosporin A, Cambridge, pp. 19-34. Amsterdam: Elsevier Biomedical Press.
Wenger, R. M. (1985). Angew. Chem. Int. Ed. Engl. 24, 77-82.

Structure and Stereochemistry of an Acetate Derivative of Cacospongionolide, a New Antitumoral Sesterterpenoid from Marine Sponge Cacospongia mollior

By Raffaella Puliti and Salvatore De Rosa
Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano 6, 80072 Arco Felice, Napoli, Italy

and Carlo Andrea Mattia and Lelio Mazzarella
Dipartimento di Chimica, Università Federico II, Via Mezzocannone 4, 80134 Napoli, Italy
(Received 9 July 1989; accepted 12 March 1990)

Abstract

Dihydro-3-\{3,6-dihydro-5-[2-(perhy-dro-1,2,3-trimethyl-4a, 5 -methano-1-naphthyl)ethyl]2 H -pyran-2-yl\}-5-oxo-2-furyl acetate, $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{5}, M_{r}$ $$
\begin{aligned} & =442 \cdot 6, \quad \text { monoclinic, } \quad P 2_{1}, \quad a=9.717(4), \quad b= \\ & 7.064(3), \quad c=18.751(6) \AA, \quad \beta=96.94(3)^{\circ}, \quad V= \\ & 1278(2) \AA^{3}, Z=2, D_{x}=1 \cdot 150 \mathrm{Mg} \mathrm{~m}^{-3}, \lambda(\mathrm{Cu} K \alpha)= \\ & \text { © } 1990 \text { International Union of Crystallography } \end{aligned}
$$

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52784 (29 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

